Сайт в стадии разработки [Старая версия сайта]
Самый цитируемый биологический институт РФ *
PDF Печать E-mail
Принадлежит к подразделению: Отдел молекулярной энергетики микроорганизмов
Руководитель: доктор биологических наук, зав. отделом, Богачев Александр Валерьевич

Основным направлением исследований нашей группы является изучение NADH:хинон-оксидоредуктазного сегмента дыхательной цепи различных прокариот. В отличие от митохондрий животных, где функционирует лишь Н+-транслоцирующая NADH:хинон оксидоредуктаза (комплекс I), окисление NADH в дыхательной цепи бактерий может осуществляться тремя различными типами ферментов: Н+-транслоцирующей (NDH-1, аналог комплекса I), Na+-транслоцирующей (NQR) и несопряженной (NDH-2) NADH:хинон оксидоредуктазами. Все эти три фермента являются объектом исследования нашей группы. Основное внимание уделяется изучению механизма сопряжения Na+-транслоцирующей NADH:хинон оксидоредуктазы.

В гетеротрофных организмах основной механизм энергопреобразования основан на запасании энергии окисления NADH молекулярным кислородом в форме трансмембранного электрохимического потенциала ионов водорода. Данный процесс осуществляется ферментативными комплексами дыхательной цепи, которые функционируют в качестве своеобразных молекулярных генераторов электрического тока. Определение механизма трансмембранной транслокации протонов этими комплексами является центральной задачей современной биоэнергетики. Данная задача в значительной степени затруднена сложностью разделения протонов, принимающих участие в протекании катализируемых окислительно-восстановительных реакций, от ионов H+, участвующих в трансмембранном переносе (помпировании). С этой точки зрения, в нашем исследовании натрий-транслоцирующей NADH:хинон оксидоредуктазы (NQR) из различных бактерий представляется уникальная возможность разделить механизм трансмембранной транслокации ионов от протон-зависимой окислительно-восстановительной «химии» реакции. Так, в данном случае, возможно исследовать каталитический цикл NQR при лимитировании его скорости низкими концентрациями Na+ и выявить в нем стадии, специфически ускоряющиеся этими ионами. Данный подход позволяет определить, какие именно окислительно-восстановительные переходы в ферменте сопряжены с трансмембранной транслокацией Na+. Также возможно определить влияние концентрации Na+ на термодинамические и конформационные свойства NQR, что позволяет установить механизм преобразования энергии катализируемой редокс-реакции в трансмембранный натриевый потенциал. Все эти подходы используются в нашей группе для определения механизма сопряжения в натрий-транслоцирующей NADH:хинон оксидоредуктазе.

Обновлено 07.04.2012 00:10
Все статьи
  1. Bertsova Y.V., Bogachev A.V., Skulachev V.P. (2015) Proteorhodopsin from Dokdonia sp PRO95 is a light-driven Na+-pump. Biochem.-Moscow, 80 (4): 449-454. >>

  2. Bertsova Y.V., Kostyrko V.A., Baykov A.A., Bogachev A.V. (2014) Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na+-translocating NADH:quinone oxidoreductase. Biochim. Biophys. Acta-Bioenerg., 1837 (7): 1122-1129. >>

  3. Bertsova Y.V., Fadeeva M.S., Kostyrko V.A., Serebryakova M.V., Baykov A.A., Bogachev A.V. (2013) Alternative Pyrimidine Biosynthesis Protein ApbE Is a Flavin Transferase Catalyzing Covalent Attachment of FMN to a Threonine Residue in Bacterial Flavoproteins. J. Biol. Chem., 288 (20): 14276-14286. >>

  4. Nunez C., Pena C., Kloeckner W., Hernandez-Eligio A., Bogachev A.V., Moreno S., Guzman J., Buchs J., Espin G. (2013) Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone. Appl. Microbiol. Biotechnol., 97 (6): 2503-2512. >>

  5. Bogachev A.V., Bertsova Y.V., Bloch D.A., Verkhovsky M.I. (2012) Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol. Microbiol., 86 (6): 1452-1463. >>

  6. Verkhovsky M.I., Bogachev A.V., Pivtsov A.V., Bertsova Y.V., Fedin M.V., Bloch D.A., Kulik L.V. (2012) Sodium-Dependent Movement of Covalently Bound FMN Residue(s) in Na+-Translocating NADH:Quinone Oxidoreductase. Biochemistry, 51 (27): 5414-5421. >>

  7. Fadeeva M.S., Bertsova Y.V., Euro L., Bogachev A.V. (2011) Cys377 Residue in NqrF Subunit Confers Ag(+) Sensitivity of Na(+)-Translocating NADH:quinone Oxidoreductase from Vibrio harveyi. Biochemistry-Moscow, 76 (2): 186-195.

  8. Bogachev A.V., Verkhovsky M.I. (2010) Thermodynamic and kinetic properties of Na(+)-motive NADH: Quinone oxidoreductase. Biochimica et Biophysica Acta-Bioenergetics, 1797: 111.

  9. Fadeeva M.S., Euro L., Bertsova Y.V., Bogachev A.V. (2010) The Cys-377 in NqrF subunit of Na(+)-translocating NADH: Quinone oxidoreductase from Vibrio harveyi confers its sensitivity to low concentrations of Ag(+) ions. Biochimica et Biophysica Acta-Bioenergetics, 1797: 113.

  10. Verkhovsky M.I., Bogachev A.V. (2010) Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump. Biochimica et Biophysica Acta-Bioenergetics, 1797 (6): 738-746.

  11. Kulik L.V., Pivtsov A.V., Bogachev A.V. (2010) Pulse EPR, ENDOR, and ELDOR Study of Anionic Flavin Radicals in Na(+)-Translocating NADH:Quinone Oxidoreductase. Applied Magnetic Resonance, 37 (1): 353-361.

  12. Bogachev A.V., Kulik L.V., Bloch D.A., Bertsova Y.V., Fadeeva M.S., Verkhovsky M.I. (2009) Redox Properties of the Prosthetic Groups of Na(+)-Translocating NADH:Quinone Oxidoreductase. 1. Electron Paramagnetic Resonance Study of the Enzyme. Biochemistry, 48 (27): 6291-6298.

  13. Bogachev A.V., Bloch D.A., Bertsova Y.V., Verkhovsky M.I. (2009) Redox Properties of the Prosthetic Groups of Na(+)-Translocating NADH:Quinone Oxidoreductase. 2. Study of the Enzyme by Optical Spectroscopy. Biochemistry, 48 (27): 6299-6304.

  14. Bogachev A.V., Belevich N.P., Bertsova Y.V., Verkhovsky M.I. (2009) Primary Steps of the Na(+)-translocating NADH: Ubiquinone Oxidoreductase Catalytic Cycle Resolved by the Ultrafast Freeze-Quench Approach. Journal of Biological Chemistry, 284 (9): 5533-5538.

  15. Nunez C., Bogachev A.V., Guzman G., Tello I., Guzman J., Espin G. (2009) The Na(+)-translocating NADH:ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology-Sgm, 155: 249-256.

  16. Fadeeva M.S., Yakovtseva E.A., Belevich G.A., Bertsova Y.V., Bogachev A.V. (2007) Regulation of expression of Na+-translocating NADH : quinone oxidoreductase genes in Vibrio harveyi and Klebsiella pneumoniae. Archives of Microbiology, 188 (4): 341-348.

  17. Bogachev A.V., Bertsova Y.V., Aitio O., Permi P., Verkhovsky M.I. (2007) Redox-dependent sodium binding by the Na+-Translocating NADH: Quinone oxidoreductase from Vibrio harveyi. Biochemistry, 46 (35): 10186-10191.

  18. Fadeeva M.S., Yakovtseva E.A., Bertsova Y.V., Bogachev A.V. (2007) Regulation of the NQR-operons expression in Vibrio harveyi and Klebsiella pneumoniae. FEBS Journal, 274: 226.

  19. Bogachev A.V., Bertsova Y.V., Bloch D.A., Verkhovsky M.I. (2006) Thermodynamic properties of the redox centers of Na+-translocating NADH : quinone oxidoreductase. Biochemistry, 45 (10): 3421-3428.

  20. Bogachev A.V., Bertsova Y.V., Bloch D.A., Verkhovsky M.I. (2006) Thermodynamic properties of the redox centers of Na+-translocating NADH: Quinone oxidoreductase. Biochimica et Biophysica Acta-Bioenergetics, : 145.

  21. Popov V.N., Bertsova Y.V., Bogachev A.V. (2006) Pathways of noncoupled and uncoupled respiration in plant mitochondria. Biochimica et Biophysica Acta-Bioenergetics, : 221-222.

  22. Bertsova Y.V., Popov V.N., Bogachev A.V. (2004) NADH oxidation by mitochondria from the thermogenic plant Arum orientale. Biochemistry-Moscow, 69 (5): 580-584.

  23. Bertsova Y.V., Bogachev A.V. (2004) The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Letters, 563 (1): 207-212.

  24. Bogachev A.V., Bertsova Y.V., Ruuge E.K., Wikstrom M., Verkhovsky M.I. (2002) Kinetics of the spectral changes during reduction of the Na+-motive NADH : quinone oxidoreductase from Vibrio harveyi. Biochimica et Biophysica Acta-Bioenergetics, 1556 (2): 113-120.

  25. Bertsova Y.V., Bogachev A.V. (2002) Operation of the cbb(3)-type terminal oxidase in Azotobacter vinelandii. Biochemistry-Moscow, 67 (6): 622-626.

  26. Elanskaya I.V., Karandashova I.V., Bogachev A.V., Hagemann M. (2002) Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803. Biochemistry-Moscow, 67 (4): 432-440.

  27. Bertsova Y.V., Bogachev A.V., Skulachev V.P. (2001) Noncoupled NADH : ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. Journal of Bacteriology, 183 (23): 6869-6874.

  28. Bogachev A.V., Bertsova Y.V., Barquera B., Verkhovsky M.I. (2001) Sodium-dependent steps in the redox reactions of the Na+-motive NADH : quinone oxidoreductase from Vibrio harveyi. Biochemistry, 40 (24): 7318-7323.

  29. Manukhov I.V., Bertsova Y.V., Trofimov D.Y., Bogachev A.V., Skulachev V.P. (2000) Analysis of HI0220 protein from Haemophilus influenzae, a novel structural and functional analog of ArcB protein from Escherichia coli. Biochemistry-Moscow, 65 (11): 1321-1326.

  30. Zhou W.D., Bertsova Y.V., Feng B.T., Tsatsos P., Verkhovskaya M.L., Gennis R.B., Bogachev A.V., Barquera B. (1999) Sequencing and preliminary characterization of the Na+-translocating NADH : ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry, 38 (49): 16246-16252.

More articles