Site is under construction [Old site version]
The most cited biological Institute in Russia *
PDF Print E-mail
it belongs to: Department of molecular energetics of microorganisms
master: Doctor of Science (Biology), head of division, Alexander V. Bogachev

The main direction of our group is to study the NADH:quinone-oxidoreductase segment of respiratory chain of various prokaryotes. Unlike of animal mitochondria where only Н+-translocating NADH:quinone-oxidoreductase (Complex I) is operative, three different enzymes can function at this segment in bacterial respiratory chains. These are the Н+-translocating (NDH-1, homologous to Complex I), Na+-translocating (NQR) and noncoupled (NDH-2) NADH:quinone-oxidoreductases. All these enzymes are studied by our group. The main attention is given to the investigation of the coupling mechanism of Na+-translocating NADH:quinone-oxidoreductase.

The major mechanism of energy conservation in living organisms is based on the conservation of redox energy released during oxidation of NADH by molecular oxygen into the transmembrane electrochemical gradient of hydrogen ions. This process is driven by molecular complexes of respiratory chain, the enzymes that work as molecular generators of electric current. The understanding of the mechanism of proton translocation by the respiratory chain complexes is a central objective of modern bioenergetics. Investigation of such mechanism has an inherent problem connected with the difficulty to distinguish between the protons required for redox chemistry and protons, which take part in proton translocation across the membrane (pumping). From that point of view the unique possibility to separate mechanism of ion translocation from proton dependent redox chemistry is provided by a redox driven primary sodium pump, which has the same function but pumps sodium ions instead of protons. For instance in this enzyme it is possible to study its catalytic cycle at low concentrations of Na+ and to establish the stages, which are specifically activated by sodium ions. This technique lets to determine, which redox transitions in the studied protein are coupled with transmembrane Na+ translocation. Also it is possible to investigate influence of sodium concentration on thermodynamic and conformational properties of the enzyme studied and thus to establish the mechanism of redox energy conversion into the transmembrane electrochemical gradient of sodium ions. In our group we use such an advantage to resolve mechanism of sodium translocation by the enzyme, the function of which is homologous to that of the mitochondrial Complex I – oxidation of NADH and reduction of ubiquinone – Na+-motive NADH:quinone oxidoreductase.

Last Updated on Saturday, 07 April 2012 00:10
Recent papers
  1. Bertsova Y.V., Bogachev A.V., Skulachev V.P. (2015) Proteorhodopsin from Dokdonia sp PRO95 is a light-driven Na+-pump. Biochem.-Moscow, 80 (4): 449-454. >>

  2. Bertsova Y.V., Kostyrko V.A., Baykov A.A., Bogachev A.V. (2014) Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na+-translocating NADH:quinone oxidoreductase. Biochim. Biophys. Acta-Bioenerg., 1837 (7): 1122-1129. >>

  3. Bertsova Y.V., Fadeeva M.S., Kostyrko V.A., Serebryakova M.V., Baykov A.A., Bogachev A.V. (2013) Alternative Pyrimidine Biosynthesis Protein ApbE Is a Flavin Transferase Catalyzing Covalent Attachment of FMN to a Threonine Residue in Bacterial Flavoproteins. J. Biol. Chem., 288 (20): 14276-14286. >>

  4. Nunez C., Pena C., Kloeckner W., Hernandez-Eligio A., Bogachev A.V., Moreno S., Guzman J., Buchs J., Espin G. (2013) Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone. Appl. Microbiol. Biotechnol., 97 (6): 2503-2512. >>

  5. Bogachev A.V., Bertsova Y.V., Bloch D.A., Verkhovsky M.I. (2012) Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol. Microbiol., 86 (6): 1452-1463. >>

  6. Verkhovsky M.I., Bogachev A.V., Pivtsov A.V., Bertsova Y.V., Fedin M.V., Bloch D.A., Kulik L.V. (2012) Sodium-Dependent Movement of Covalently Bound FMN Residue(s) in Na+-Translocating NADH:Quinone Oxidoreductase. Biochemistry, 51 (27): 5414-5421. >>

  7. Fadeeva M.S., Bertsova Y.V., Euro L., Bogachev A.V. (2011) Cys377 Residue in NqrF Subunit Confers Ag(+) Sensitivity of Na(+)-Translocating NADH:quinone Oxidoreductase from Vibrio harveyi. Biochemistry-Moscow, 76 (2): 186-195.

  8. Bogachev A.V., Verkhovsky M.I. (2010) Thermodynamic and kinetic properties of Na(+)-motive NADH: Quinone oxidoreductase. Biochimica et Biophysica Acta-Bioenergetics, 1797: 111.

  9. Fadeeva M.S., Euro L., Bertsova Y.V., Bogachev A.V. (2010) The Cys-377 in NqrF subunit of Na(+)-translocating NADH: Quinone oxidoreductase from Vibrio harveyi confers its sensitivity to low concentrations of Ag(+) ions. Biochimica et Biophysica Acta-Bioenergetics, 1797: 113.

  10. Verkhovsky M.I., Bogachev A.V. (2010) Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump. Biochimica et Biophysica Acta-Bioenergetics, 1797 (6): 738-746.

  11. Kulik L.V., Pivtsov A.V., Bogachev A.V. (2010) Pulse EPR, ENDOR, and ELDOR Study of Anionic Flavin Radicals in Na(+)-Translocating NADH:Quinone Oxidoreductase. Applied Magnetic Resonance, 37 (1): 353-361.

  12. Bogachev A.V., Kulik L.V., Bloch D.A., Bertsova Y.V., Fadeeva M.S., Verkhovsky M.I. (2009) Redox Properties of the Prosthetic Groups of Na(+)-Translocating NADH:Quinone Oxidoreductase. 1. Electron Paramagnetic Resonance Study of the Enzyme. Biochemistry, 48 (27): 6291-6298.

  13. Bogachev A.V., Bloch D.A., Bertsova Y.V., Verkhovsky M.I. (2009) Redox Properties of the Prosthetic Groups of Na(+)-Translocating NADH:Quinone Oxidoreductase. 2. Study of the Enzyme by Optical Spectroscopy. Biochemistry, 48 (27): 6299-6304.

  14. Bogachev A.V., Belevich N.P., Bertsova Y.V., Verkhovsky M.I. (2009) Primary Steps of the Na(+)-translocating NADH: Ubiquinone Oxidoreductase Catalytic Cycle Resolved by the Ultrafast Freeze-Quench Approach. Journal of Biological Chemistry, 284 (9): 5533-5538.

  15. Nunez C., Bogachev A.V., Guzman G., Tello I., Guzman J., Espin G. (2009) The Na(+)-translocating NADH:ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology-Sgm, 155: 249-256.

  16. Fadeeva M.S., Yakovtseva E.A., Belevich G.A., Bertsova Y.V., Bogachev A.V. (2007) Regulation of expression of Na+-translocating NADH : quinone oxidoreductase genes in Vibrio harveyi and Klebsiella pneumoniae. Archives of Microbiology, 188 (4): 341-348.

  17. Bogachev A.V., Bertsova Y.V., Aitio O., Permi P., Verkhovsky M.I. (2007) Redox-dependent sodium binding by the Na+-Translocating NADH: Quinone oxidoreductase from Vibrio harveyi. Biochemistry, 46 (35): 10186-10191.

  18. Fadeeva M.S., Yakovtseva E.A., Bertsova Y.V., Bogachev A.V. (2007) Regulation of the NQR-operons expression in Vibrio harveyi and Klebsiella pneumoniae. FEBS Journal, 274: 226.

  19. Bogachev A.V., Bertsova Y.V., Bloch D.A., Verkhovsky M.I. (2006) Thermodynamic properties of the redox centers of Na+-translocating NADH : quinone oxidoreductase. Biochemistry, 45 (10): 3421-3428.

  20. Bogachev A.V., Bertsova Y.V., Bloch D.A., Verkhovsky M.I. (2006) Thermodynamic properties of the redox centers of Na+-translocating NADH: Quinone oxidoreductase. Biochimica et Biophysica Acta-Bioenergetics, : 145.

  21. Popov V.N., Bertsova Y.V., Bogachev A.V. (2006) Pathways of noncoupled and uncoupled respiration in plant mitochondria. Biochimica et Biophysica Acta-Bioenergetics, : 221-222.

  22. Bertsova Y.V., Popov V.N., Bogachev A.V. (2004) NADH oxidation by mitochondria from the thermogenic plant Arum orientale. Biochemistry-Moscow, 69 (5): 580-584.

  23. Bertsova Y.V., Bogachev A.V. (2004) The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Letters, 563 (1): 207-212.

  24. Bogachev A.V., Bertsova Y.V., Ruuge E.K., Wikstrom M., Verkhovsky M.I. (2002) Kinetics of the spectral changes during reduction of the Na+-motive NADH : quinone oxidoreductase from Vibrio harveyi. Biochimica et Biophysica Acta-Bioenergetics, 1556 (2): 113-120.

  25. Bertsova Y.V., Bogachev A.V. (2002) Operation of the cbb(3)-type terminal oxidase in Azotobacter vinelandii. Biochemistry-Moscow, 67 (6): 622-626.

  26. Elanskaya I.V., Karandashova I.V., Bogachev A.V., Hagemann M. (2002) Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803. Biochemistry-Moscow, 67 (4): 432-440.

  27. Bertsova Y.V., Bogachev A.V., Skulachev V.P. (2001) Noncoupled NADH : ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. Journal of Bacteriology, 183 (23): 6869-6874.

  28. Bogachev A.V., Bertsova Y.V., Barquera B., Verkhovsky M.I. (2001) Sodium-dependent steps in the redox reactions of the Na+-motive NADH : quinone oxidoreductase from Vibrio harveyi. Biochemistry, 40 (24): 7318-7323.

  29. Manukhov I.V., Bertsova Y.V., Trofimov D.Y., Bogachev A.V., Skulachev V.P. (2000) Analysis of HI0220 protein from Haemophilus influenzae, a novel structural and functional analog of ArcB protein from Escherichia coli. Biochemistry-Moscow, 65 (11): 1321-1326.

  30. Zhou W.D., Bertsova Y.V., Feng B.T., Tsatsos P., Verkhovskaya M.L., Gennis R.B., Bogachev A.V., Barquera B. (1999) Sequencing and preliminary characterization of the Na+-translocating NADH : ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry, 38 (49): 16246-16252.

More articles